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ABSTRACT

In this paper, we present a hybrid approach that uses both fuzzy logic and artificial neural networks for on-
line detection and analysis of problems occurring in a 120 liter anaerobic digestion fluidized bed reactor for
the treatment of wine distillery wastewater. The raw data available on the process (i.e., pH, temperature,
recirculation flow rate, input flow rate and gas flow rate) are preprocessed using fuzzy logic to build a vector
of features (i.e., a pattern vector). This feature vector is classified intc a prespecified category (i.c., a class)
which is a state of the system, according to discrimination fuzzy rules. An artificial neural network is then
used to classify the process states and to identify the faulty or dangerous ones. This approach was developed
to handle in real time problems such as, for example, foam forming, sudden changes in the effluent to be
treated (due to a change in concentration), pipe clogging (due to struvite formation) or bad temperature
regulation (due to improper setting of the control parameters). © 1997 IAWQ. Published by Elsevier Science
Ltd
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INTRODUCTION

For many years now, research has been carried out on the microbial ecosystem of the anaerobic digestion
process, its kinetics, mathematical modeling and on the development of appropriate control strategies. This
has allowed one to determine the different parameters involved in the process and the values necessary to
perform good operating conditions. In particular, dynamic models have been shown to be very powerful
tools to improve monitoring and control of wastewater treatment plants: they can first be used to analyze and
to predict the performance of a plant under different operating conditions (Andrews, 1978; Mosey, 1983).
They can also help to understand the process from a global point-of-view and to train the process operators
(Mc Carthy er al., 1991). But they can also be used directly in the control loop thus improving the running of
a process. However, more or less serious breakdowns in industrial applications have been reported owing
mainly to the organic overload of various origins. They created some kind of suspicion towards this process
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and delayed its development. Thus, the importance of implementing efficient diagnosis systems for
anaerobic digestion processes is of no doubt. Anaerobic digestion is indeed intrinsically a very unstable
process: for example, variations of the input variables (hydraulic flow rate, influent organic load) may easily
lead the process to a wash-out of the tank.

A clear need for advanced monitoring and control systems is thus expressed. However, the classical
monitoring and control methods are proven to be not very efficient to tide over the internal working and
dynamics of the wastewater treatment processes. Indeed, most often there exists only local control actions
based on pH and/or temperature regulation for instance which are inefficient to control the key biochemical
process variables and to optimize the process operation. An important missing link is clearly the availability
of decision support systems capable of improving the relevance of the on-line measurements and of handling
the ill-defined available knowledge while controlling the wastewater treatment process.

As a consequence, and because of increasing requirements on reliability and safety of technical processes,
many advanced methods have been developed for fault detection (FD) and diagnosis in recent years.
However, most of these approaches are based on mathematical models of the process even though global
and accurate models are often unavailable in the case of complex systems. This is particularly true for
biological wastewater treatment processes that, in addition, are submitted to a wide range of perturbations
and thus, to different sources of dysfunctionning. Complementary to advanced control schemes, monitoring
systems including diagnosis capabilities can then be of a great help to improve waste removal.

This last decade, fuzzy logic already demonstrated its interest for modeling, control and/or diagnosis of ill-
defined complex systems. In particular, fuzzy sets theory allows us to deal with the uncertainty in the
recognition process and to elaborate complex decision rules (Frank, 1994). In addition to this approach, the
emergence of the neural network paradigm as a powerful tool for learning complex mappings from a set of
examples has triggered interest in using neural network models for fault diagnosis (Koppen-Seliger et al.,
1995). We thus decided to combine both fuzzy logic and artificial neural networks in a single frame in order
to be able to detect any discrepancy occurring on the process.

MATERIALS AND METHODS

The wastewater to be treated is an industrial wine distillery effluent whose COD content is approximately 30
g/1. The process is a fluidized bed reactor of 120 liters working volume. Its architecture is depicted in Figure
1. The reactor is a 0.25 x 3.65 m inox column. Temperature is maintained at 3532°C by a variable power
heat exchanger. A settling device is provided in order to separate the off bioparticles from the liquid phase
and to recycle it periodically into the reactor by means of a vortex pump. The support particles are a fine
granular material with a specific gravity of 2. The expansion is provided by the recycle flow.

All main parameters (i.e., pH, temperature, liquid and gas flow rates) are measured and stored on a perscnal
computer using advanced monitoring software named Control-BUFFER developed in our laboratory. This
software includes several control strategies together with the diagnosis procedure presented here.

A first problem we want to avoid is the inappropriate tuning of control algorithms. We had an example
where, due to the bad control that lasted for 15 hours, we were not able to operate the process for the next 75
hours (that is more than 5 times the problem duration). It is obvious that this situation should be avoided at
any price. But other problems — much less predictable — may appear even though the control action is
appropriate. Among the problems we faced, we can notice:

] pipe clogging (cf. Figure 2): if everything was normal, the valve opening should be constant to keep
the flow rate constant. However, because of struvite formation, pipe clogging occurred and valve opening
had to increase.

. foam forming (cf. Figure 3): the gas flow rate was constant until foam forming occurred and
disturbed the measurement from time T = 10 h to T = 32 h (when antifoam was added).
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Figure 1. Experimental setting.
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Figure 2. Influence of pipe clogging on the valve opening.
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Figure 3. Influence of foam forming on the output gas flow rate (normalized values).
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RESULTS AND DISCUSSION

The diagnosis architecture we developed is depicted in Figure 4. It involves several steps. First, every
measurement — together with any signal processing and/or calculation related to it (e.g., trend quantification,
noise affecting the signal and results from numerical models) — is qualified into a fuzzy value: low, normal
or high by comparison to a moving average (cf. Figure 5). This fuzzy qualification is then combined with
additional fuzzy rules to determine whether or not the variables are in a faulty situation. Additional
information is provided by the membership function of the faulty set since this can be linked to the
percentage of fault. Figures 6.a and 6.b illustrate this step. They present the fuzzy diagnosis of two eventual
problems related to the analysis of the output gas flow rate shown in Figure 3: "Diag_Sin" indicates if the
fault detected is a change of the influent substrate concentration and/or feed rate (cf. Figure 6.a) and
"Diag_Foam" gives information about foam forming. When these variables are equals to 0, then the process
is considered in normal operating conditions whereas a value of 1 shows a totally faulty situation (i.e., 100
% of error). Between these values, they indicate the percentage of suspicion that a problem is occurring.
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Figure 4. General architecture of our hybrid fuzzy neural network diagnosis scheme.

Then, the variables interactions are accounted for within a fuzzy model of the system. This step provides a
vector of feature (i.e., a pattern vector) that is classified into a prespecified category (i.e., a class) according
to discrimination fuzzy rules. Alarm filtering (AF) by focusing on the original causes is here the main goal.
As a very simple example, this step can be again illustrated using Figures 6.2 and 6.b. By classifying
“Diag_Foam" by a higher order than "Diag_Sin”, the diagnosis procedure only focuses on the problem
related to foam forming. Another example is presented in Figure 7. In this case, we disturbed on purpose the
influent liquid flow rate (Figure 7.a) but we did not indicate it to the FD procedure. Effects of these changes
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can be seen on the output gas flow rate (Figure 7.b). By just analyzing this evolution, the FD and AF
procedures provided the results in Figure 7.c and 7.d. We can see that the diagnosis was well focused on the
change of the influent and that foam forming was not suspected.
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Figure 5. An example of fuzzy qualification of a property of the variable #i.
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Figure 6. Diagnosis (in percentage of error) on the change of the influent (a) and on the foam forming (b) when
analyzing the output gas flow rate presented in Figure 3.

The procedure could have been stopped at the previous step if the process was always in the same operating
conditions. Indeed, in such a case, we would not need to adapt the FD thresholds from time to time.
However, anaerobic digestion systems — and any wastewater treatment plant in general — is anything but in
stable operating conditions. It is obvious when we deal with the start-up of a process: the more the process
goes on, the more the biomass is present and active. This has a large influence on the dynamics of the
process and thus, thresholds have to be adapted. But thresholds have also to be adapted even though a
process is running in the same operating conditions for a long time. Indeed, even though it seems to be in
steady state, disturbances like changes in the influent concentration and quantity, together with changes in
the pH, the temperature or any variable influence the dynamics of the process. Thus, a particular evolution
could lead, one day, to an alarm and, another day, could be judged as a normal situation. When we tackled
this problem, we found artificial neural networks (ANN) very efficient to map the measurement changes to
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the evolving faulty situations. Indeed, they are very efficient tools to handle multivariable non-linear
relationships like those we have to deal with. Each variable to be diagnosed is thus related to a specific
neural net (i.e., one input and one output). We determined the following ANN architecture to be the most
appropriate for our purpose: 2 hidden layers with 4 neurons in the first layer and 2 in the second one,
feedforward architecture and training performed using the Levenberg-Marquardt methods. The learning
phase of each ANN was done using the fuzzy aggregation of the variables into the fuzzy model. In each
case, different faults were used to provide a good mapping capability. Figure 8 shows a comparison of the
FD results using fuzzy qualification and ANN when the organic loading rate is changed on purpose (but
without indicating it to the FD procedure). We can see that the neural net is more capable of detecting the
fault than the fuzzy qualification. It is to be noticed that in this example, the gas flow rate evolution was not
part of the training set of the neural network.
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Figure 7. An example of fault detection and alarm filtering when the organic loading rate is changed.

Finally, the last step provides a deeper analysis of the problems. It is different from the second stage that just
handled simple relationships between variables and could be viewed as a one-step ahead management of the
inter-relationships. Since anaerobic digestion processes are much more complex than straightforward links
between variables, we indeed decided to build a general model based on a causal graph representation
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support. This provides a clear view of causality links and thereby a good support for explanation. In
addition, the "biological dimension" inherent in these processes could be expressed within an appropriate
formalism, deep enough to get close to the micro-organisms activity but simple enough to be used on-line
(Steyer 1991).

We applied this formalism, together with a specific qualitative reasoning technique — the " reasoning on the
standard state” (RSS) (Steyer et al, 1996) — and we included statistical tests to automatically manage the
cross-relationship between variables. Compared with a classical expert system with IF-THEN rules where
every situation has to be accounted for from the beginning (see for example (Barnett et al., 1992)), this
approach allows us to build much simpler knowledge bases (KB). An example is presented in Figure 9: the
first line is used for the statistical tests and the second line is the KB of the TRC300 variable. Each variable
has thus its own KB which is no more than a single line such as, for the variable TRC300: "'m #f m grc
m cap m cal m".

1.0
08
06 }
04 L
0.2
0.0

(@)

Time (h)
0 10 20 30 40 50 60 70

1.0
08
06
04 ¢

®

0.2 Time (h)
0.0

Ouput Gas Flow Rate (/h) Input Liquid Flow Rate (Vh)

1.0
08 |
06
04

Fuzzy Diag_Sin

02 Time (h)
00 g 10 20 30 20 0 60 70

1.0
08 I
06 [
04 1

ANN Diag_Sin

02 Time (b)
00 g 10 20 30 20 50 60 70

Figure 8. Comparison of fault detection using fuzzy qualification and artificial neural network when the organic
loading rate is changed.
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Figure 9. Knowledge base associated to a process variable.

This is to be read as following: the "standard state" (i.e., the optimal state) of TRC300 is "medium" and
when its measured state is "medium", trc, cap and cal should also be "medium”. If this is not the case, the
RSS methodology automatically generates the list of possible causes of this problem using logical
relationships. Then, statistical tests using for example the Table of Student (Schwartz, 1980) are activated to
determine the degree of relationship between measurement evolutions in order to focus on the most
informative variables. Another important advantage of this approach is the possibility to on-line change ~
using any text editor — the KB according to the experience gained on the process. In addition, when applied
to failure diagnosis and process monitoring, classical expert systems are often based on sets of symptoms of
the different faults and/or influences that can affect the system. If, on one hand, the diagnosis problem is
simplified, on the other hand, the detection decision may fail if the failures set is not complete. On the
opposite, by combining quantitative and qualitative information in a model-based approach, the RSS
methodology was demonstrated to be more reliable and more robust.

CONCLUSION

This paper presented an ap;;roach combining fuzzy logic, artificial neural networks and a qualitative
knowledge-based model for the diagnosis of an anaerobic digestion process. The obtained results
demonstrated its ability to handle a large number of problems in a simple frame.

Finally, this approach is to be seen as a complement to control systems. Indeed, control systems are usually
dedicated to specific tasks and their choice results from compromise between different objectives. For
example, one might want to optimize the starting operation of a plant, to obtain good performances of the
process and/or to regulate a substrate concentration at a desired value despite disturbances on the reactor.
The control theory can handle separately these objectives but an important missing link is clearly the
availability of decision support systems capable of:

. deciding when to switch from one control scheme to another one,
] setting more appropriate values of the tuning parameters of a chosen control scheme,
. improving the relevance of the on-line measurements and handling the process despite problems with

a sensor and/or an actuator.

REFERENCES

Andrews, J.F. (1978). The development of a dynamic model and control strategies for the anaerobic digestion process, Math. Mod.
in Wat. Poll. Cont., J. Wiley, Chichester, 281.

Barnett, M.W. and Andrews, J.F., (1992). Expert system for anaerobic digestion process operation, Journal of Environmental
Engineering, 118(6), 949-963.

Frank, P.M. (1994). Application of fuzzy logic to process supervision and fault diagnosis, Proc. IFAC Symp. On Fault Detection,
Supervision and Safety for Technical Processes, Espoo, Finland, vol. 2, 531-538.

Képpen-Seliger, B., Frank, P.M. (1995). Fault Detection and isolation in technical processes with neural networks, Proc. Int.
Conf. On Decision and Control, New Orleans, USA, 2414-2419.

McCarthy, P.L. and Mosey, F.E. (1991). Modelling of anaerobic processes (a discussion of concepts), War. Sci. Tech., 24, 17-33.



Hybrid fuzzy neural network for diagnosis 217

Mosey, F.E. (1983). Mathematical modelling of the anaerobic digestion process: Regulatory mechanisms for the formation of
short-chain volatile acids from glucose, Wat. Sci. Tech., 15, 209-232.

Schwartz, D. (1980). Méthodes statistiques a l'usage des médecins et biologistes, Collection Statitique en Biologie et Médecine,
Flammarion Médecine Science Eds, 311 pages.

Steyer, J-Ph. (1991). Sur une approche qualitative des sysiémes physiques: Aide en temps réel a la conduite de procédés
Sfermentaires, PhD. Thesis, Université Paul Sabatier, Toulouse, France.

Steyer, J-Ph., Queinnec, I, Capit, F. and Pourciel, J-B. (1996). Qualitative rules as a way to handle the biological state of a
fermentation process: An industrial application, Journal Européen des Systémes Automatisés JESA-RAIRO-APII, 30(2/3),
381-398.



